LSegModel
- class grid.model.perception.segmentation.lseg.LSegModel(*args, **kwargs)
Language-driven semantic segmentation model integrated with CLIP features.
- Credits:
https://github.com/krrish94/lseg-minimal and https://github.com/isl-org/lang-seg
- License:
This code is licensed under the MIT License.
- __init__()
- Return type:
None
- run(image, segclasses)
Run segmentation with feature extraction for similarity matching based on a prompt.
- Parameters:
image (np.ndarray) -- The input image as a NumPy array.
segclasses (str) -- Comma-separated string of segmentation classes.
- Returns:
The segmented image as a NumPy array.
- Return type:
np.ndarray
Example
>>> lseg_model = LSegModel() >>> img = np.array(Image.open("data/safelanding.png").convert("RGB")) >>> seg = lseg_model.run(img, "grass,water")