OneFormer
- class grid.model.perception.segmentation.oneformer.OneFormer(*args, **kwargs)
OneFormer Image segmentation model
This class implements a wrapper for the OneFormer model, which performs image segmentation using the OneFormer architecture.
Credits: https://github.com/SHI-Labs/OneFormer
- License:
This code is licensed under the MIT License.
- __init__()
- Return type:
None
- panoptic_run(img)
Runs the OneFormer segmentation model in panoptic mode.
- Parameters:
img (np.ndarray) -- The input image to perform segmentation on.
- Returns:
A tuple containing the predicted segmentation map and the visualization image.
- Return type:
Tuple[np.ndarray, np.ndarray]
Example
>>> oneformer = OneFormer() >>> img = np.array(Image.open("data/turbine/rgb.png")) >>> seg, viz = oneformer.panoptic_run(img)
- run(image, mode='panoptic')
Runs the OneFormer segmentation model on the given image.
- Parameters:
image (np.ndarray) -- The input image to perform segmentation on.
mode (str, optional) -- The segmentation mode. Must be one of ['panoptic', 'semantic']. Defaults to "panoptic".
- Returns:
A tuple containing the predicted segmentation map and the visualization image.
- Return type:
Tuple[np.ndarray, np.ndarray]
Example
>>> oneformer = OneFormer() >>> img = np.array(Image.open("data/turbine/rgb.png")) >>> seg, viz = oneformer.run(img, mode="panoptic")
- semantic_run(img)
Runs the OneFormer segmentation model in semantic mode.
- Parameters:
img (np.ndarray) -- The input image to perform segmentation on.
- Returns:
A tuple containing the predicted segmentation map and the visualization image.
- Return type:
Tuple[np.ndarray, np.ndarray]
Example
>>> oneformer = OneFormer() >>> img = np.array(Image.open("data/turbine/rgb.png")) >>> seg, viz = oneformer.semantic_run(img)