from grid.model.perception.vo.vo_dpvo import DPVOcar = AirGenCar()# We will be capturing an image from the AirGen simulator # and run model inference on it.img = car.getImage("front_center","rgb").datamodel = DPVO(use_local =True)result = model.run(image=img)
The DPVO class is a wrapper for the DPVO model, which estimates camera poses from RGB images using a deep learning approach.
Uses DPVO to predict the camera pose for the given RGB image relative to the previous one.
If this is the first image, initializes the pose estimation routine.
The predicted pose as a 1x6 tensor containing X, Y, Z positions and R, P, Y orientation.
from grid.model.perception.vo.vo_dpvo import DPVOcar = AirGenCar()# We will be capturing an image from the AirGen simulator # and run model inference on it.img = car.getImage("front_center","rgb").datamodel = DPVO(use_local =True)result = model.run(image=img)
from grid.model.perception.vo.vo_dpvo import DPVOcar = AirGenCar()# We will be capturing an image from the AirGen simulator # and run model inference on it.img = car.getImage("front_center","rgb").datamodel = DPVO(use_local =True)result = model.run(image=img)