from grid.model.perception.marigold_e2e_ft import MarigoldE2EFTcar = AirGenCar()# We will be capturing an image from the AirGen simulator # and run model inference on it.img = car.getImage("front_center","rgb").datamodel = MarigoldE2EFT(use_local =False)result = model.run(rgbimage=img)print(result.shape)
The MarigoldE2EFT class is a wrapper for the Marigold end-to-end fine-tuned depth estimation model.
from grid.model.perception.marigold_e2e_ft import MarigoldE2EFTcar = AirGenCar()# We will be capturing an image from the AirGen simulator # and run model inference on it.img = car.getImage("front_center","rgb").datamodel = MarigoldE2EFT(use_local =False)result = model.run(rgbimage=img)print(result.shape)
This code is licensed under the Apache 2.0 License.
from grid.model.perception.marigold_e2e_ft import MarigoldE2EFTcar = AirGenCar()# We will be capturing an image from the AirGen simulator # and run model inference on it.img = car.getImage("front_center","rgb").datamodel = MarigoldE2EFT(use_local =False)result = model.run(rgbimage=img)print(result.shape)