from grid.model.perception.depth.metric3d import Metric3Dcar = AirGenCar()# We will be capturing an image from the AirGen simulator # and run model inference on it.img = car.getImage("front_center","rgb").datamodel = Metric3D(use_local =False)result = model.run(rgbimage=img)print(result.shape)
The Metric3D class provides a wrapper for the Metric3D model, which estimates depth
maps from RGB images using a variety of encoder types.
from grid.model.perception.depth.metric3d import Metric3Dcar = AirGenCar()# We will be capturing an image from the AirGen simulator # and run model inference on it.img = car.getImage("front_center","rgb").datamodel = Metric3D(use_local =False)result = model.run(rgbimage=img)print(result.shape)
This code is licensed under the BSD 2-Clause License.
from grid.model.perception.depth.metric3d import Metric3Dcar = AirGenCar()# We will be capturing an image from the AirGen simulator # and run model inference on it.img = car.getImage("front_center","rgb").datamodel = Metric3D(use_local =False)result = model.run(rgbimage=img)print(result.shape)