from grid.model.perception.depth.midas import MIDAS
car = AirGenCar()

# We will be capturing an image from the AirGen simulator 
# and run model inference on it.

img =  car.getImage("front_center", "rgb").data

model = MIDAS(use_local = False)
result = model.run(rgbimage=img)
print(result.shape)

The MIDAS class provides a wrapper for the MIDAS model, which estimates depth maps from RGB images using the DPTForDepthEstimation model.

class MIDAS()
use_local
boolean
default:
"False"

If True, inference call is run on the local VM, else offloaded onto GRID-Cortex. Defaults to False.

def run()
rgbimage
np.ndarray
required

The input RGB image of shape (M,N,3)(M,N,3).

Returns
np.ndarray

The predicted depth map of shape (M,N)(M,N).

from grid.model.perception.depth.midas import MIDAS
car = AirGenCar()

# We will be capturing an image from the AirGen simulator 
# and run model inference on it.

img =  car.getImage("front_center", "rgb").data

model = MIDAS(use_local = False)
result = model.run(rgbimage=img)
print(result.shape)

This code is licensed under the Apache 2.0 License.

Was this page helpful?