from grid.model.perception.depth.midas import MIDAScar = AirGenCar()# We will be capturing an image from the AirGen simulator # and run model inference on it.img = car.getImage("front_center","rgb").datamodel = MIDAS(use_local =False)result = model.run(rgbimage=img)print(result.shape)
The MIDAS class provides a wrapper for the MIDAS model, which estimates depth
maps from RGB images using the DPTForDepthEstimation model.
from grid.model.perception.depth.midas import MIDAScar = AirGenCar()# We will be capturing an image from the AirGen simulator # and run model inference on it.img = car.getImage("front_center","rgb").datamodel = MIDAS(use_local =False)result = model.run(rgbimage=img)print(result.shape)
This code is licensed under the Apache 2.0 License.
from grid.model.perception.depth.midas import MIDAScar = AirGenCar()# We will be capturing an image from the AirGen simulator # and run model inference on it.img = car.getImage("front_center","rgb").datamodel = MIDAS(use_local =False)result = model.run(rgbimage=img)print(result.shape)