from grid.model.perception.detection.owlv2 import OWLv2
car = AirGenCar()

# We will be capturing an image from the AirGen simulator 
# and run model inference on it.

img =  car.getImage("front_center", "rgb").data

model = OWLv2(use_local = False)
box, scores, labels = model.run(rgbimage=img, prompt=<prompt>)
print(box, scores, labels)

## if you want to use the model locally, set use_local=True
model = OWLv2(use_local = True)
box, scores, labels = model.run(rgbimage=img, prompt=<prompt>)
print(box, scores, labels)

The OWLv2 implements a wrapper for the OWLv2 model, which detects objects in RGB images based on a text prompt.

class OWLv2()
use_local
boolean
default:
"False"

If True, inference call is run on the local VM, else offloaded onto GRID-Cortex. Defaults to False.

box_threshold
float
default:
"0.4"

Confidence threshold for bounding box detection.

def run()
rgbimage
np.ndarray
required

The input RGB image of shape (M,N,3)(M,N,3).

prompt
str
required

Text prompt for object detection. Multiple prompts can be separated by a ”,”.

Returns
List[float], List[float], List[str]

Returns three lists: bounding boxes coordinates, confidence scores, and label strings.

from grid.model.perception.detection.owlv2 import OWLv2
car = AirGenCar()

# We will be capturing an image from the AirGen simulator 
# and run model inference on it.

img =  car.getImage("front_center", "rgb").data

model = OWLv2(use_local = False)
box, scores, labels = model.run(rgbimage=img, prompt=<prompt>)
print(box, scores, labels)

## if you want to use the model locally, set use_local=True
model = OWLv2(use_local = True)
box, scores, labels = model.run(rgbimage=img, prompt=<prompt>)
print(box, scores, labels)

This code is licensed under the Apache 2.0 License.

Was this page helpful?