from grid.model.perception.detection.rt_detr import RT_DETRimport rerun as rrcar = AirGenCar()# We will be capturing an image from the AirGen simulator # and run model inference on it.img = car.getImage("front_center","rgb").datamodel = RT_DETR(use_local=True)result = model.run(input=img.copy(), confidence_threshold=0.5)rr.log("result",rr.Image(result))
The RT_DETR class implements a wrapper for the RT_DETR model, which detects objects in images and videos using a real-time detection transformer.
Annotated image with bounding boxes and class labels.
from grid.model.perception.detection.rt_detr import RT_DETRimport rerun as rrcar = AirGenCar()# We will be capturing an image from the AirGen simulator # and run model inference on it.img = car.getImage("front_center","rgb").datamodel = RT_DETR(use_local=True)result = model.run(input=img.copy(), confidence_threshold=0.5)rr.log("result",rr.Image(result))
This code is licensed under the Apache 2.0 License.
from grid.model.perception.detection.rt_detr import RT_DETRimport rerun as rrcar = AirGenCar()# We will be capturing an image from the AirGen simulator # and run model inference on it.img = car.getImage("front_center","rgb").datamodel = RT_DETR(use_local=True)result = model.run(input=img.copy(), confidence_threshold=0.5)rr.log("result",rr.Image(result))