from grid.model.perception.vlm.llava import LLaVAcar = AirGenCar()# We will be capturing an image from the AirGen simulator # and run model inference on it.img = car.getImage("front_center","rgb").datamodel = LLaVA(use_local =False)result = model.run(rgbimage=img, prompt=<prompt>)print(result)
The LLaVA class provides a wrapper for the LLaVA model, which answers questions
about visual media (images) using the LLaVA framework.
from grid.model.perception.vlm.llava import LLaVAcar = AirGenCar()# We will be capturing an image from the AirGen simulator # and run model inference on it.img = car.getImage("front_center","rgb").datamodel = LLaVA(use_local =False)result = model.run(rgbimage=img, prompt=<prompt>)print(result)
This code is licensed under the Apache 2.0 License.
from grid.model.perception.vlm.llava import LLaVAcar = AirGenCar()# We will be capturing an image from the AirGen simulator # and run model inference on it.img = car.getImage("front_center","rgb").datamodel = LLaVA(use_local =False)result = model.run(rgbimage=img, prompt=<prompt>)print(result)