from grid.model.perception.vlm.molmo import Molmocar = AirGenCar()# We will be capturing an image from the AirGen simulator # and run model inference on it.img = car.getImage("front_center","rgb").datamodel = Molmo(use_local =False)result = model.run(image=img, prompt=<prompt>)print(result)
The Molmo class provides core functionality for this module.
from grid.model.perception.vlm.molmo import Molmocar = AirGenCar()# We will be capturing an image from the AirGen simulator # and run model inference on it.img = car.getImage("front_center","rgb").datamodel = Molmo(use_local =False)result = model.run(image=img, prompt=<prompt>)print(result)
This code is licensed under the Apache 2.0 License.
from grid.model.perception.vlm.molmo import Molmocar = AirGenCar()# We will be capturing an image from the AirGen simulator # and run model inference on it.img = car.getImage("front_center","rgb").datamodel = Molmo(use_local =False)result = model.run(image=img, prompt=<prompt>)print(result)