from grid.model.perception.vlm.minicpm import MiniCPMcar = AirGenCar()# We will be capturing an image from the AirGen simulator # and run model inference on it.img = car.getImage("front_center","rgb").datamodel = MiniCPM(use_local =True)result = model.run(media=img, prompt=<prompt>)print(result)
The MiniCPM class provides a wrapper for MiniCPM v2.6 that answers questions based on both images and videos.
from grid.model.perception.vlm.minicpm import MiniCPMcar = AirGenCar()# We will be capturing an image from the AirGen simulator # and run model inference on it.img = car.getImage("front_center","rgb").datamodel = MiniCPM(use_local =True)result = model.run(media=img, prompt=<prompt>)print(result)
This code is licensed under the Apache 2.0 License. We have obtained official license from the company to offer this model on GRID.
from grid.model.perception.vlm.minicpm import MiniCPMcar = AirGenCar()# We will be capturing an image from the AirGen simulator # and run model inference on it.img = car.getImage("front_center","rgb").datamodel = MiniCPM(use_local =True)result = model.run(media=img, prompt=<prompt>)print(result)