from grid.model.perception.vlm.moondream import MoonDream
car = AirGenCar()

# We will be capturing an image from the AirGen simulator 
# and run model inference on it.

img =  car.getImage("front_center", "rgb").data

model = MoonDream(use_local = False)
result = model.run(rgbimage=img, prompt=<prompt>)
print(result)

The MoonDream class provides a wrapper for the MoonDream v3 model, which answers questions about visual media (images).

class MoonDream()
use_local
boolean
default:
"False"

If True, inference call is run on the local VM, else offloaded onto GRID-Cortex. Defaults to False.

def run()
rgbimage
np.ndarray
required

The input RGB image of shape (M,N,3)(M,N,3).

prompt
str
required

The question to answer about the media.

Returns
str

The response to the prompt.

from grid.model.perception.vlm.moondream import MoonDream
car = AirGenCar()

# We will be capturing an image from the AirGen simulator 
# and run model inference on it.

img =  car.getImage("front_center", "rgb").data

model = MoonDream(use_local = False)
result = model.run(rgbimage=img, prompt=<prompt>)
print(result)

This code is licensed under the Apache 2.0 License.

Was this page helpful?