from grid.model.perception.vlm.llava_next import LLaVANeXTcar = AirGenCar()# We will be capturing an image from the AirGen simulator # and run model inference on it.img = car.getImage("front_center","rgb").datamodel = LLaVANeXT(use_local =True)result = model.run(rgbimage=img, prompt=<prompt>)print(result)
The LLaVANeXT class provides A wrapper for the LLaVANeXT model, which answers questions
about visual media (images/videos) using the LLaVANeXT framework.
from grid.model.perception.vlm.llava_next import LLaVANeXTcar = AirGenCar()# We will be capturing an image from the AirGen simulator # and run model inference on it.img = car.getImage("front_center","rgb").datamodel = LLaVANeXT(use_local =True)result = model.run(rgbimage=img, prompt=<prompt>)print(result)
This code is licensed under the Apache 2.0 License.
from grid.model.perception.vlm.llava_next import LLaVANeXTcar = AirGenCar()# We will be capturing an image from the AirGen simulator # and run model inference on it.img = car.getImage("front_center","rgb").datamodel = LLaVANeXT(use_local =True)result = model.run(rgbimage=img, prompt=<prompt>)print(result)