from grid.model.perception.segmentation.clipseg import CLIPSegcar = AirGenCar()# We will be capturing an image from the AirGen simulator # and run model inference on it.img = car.getImage("front_center","rgb").datamodel = CLIPSeg(use_local =False)result = model.run(rgbimage=img, prompt=<prompt>)print(result.shape)
The CLIPSeg implements a wrapper for the CLIPSeg model, which segments images based on a given text prompt.
from grid.model.perception.segmentation.clipseg import CLIPSegcar = AirGenCar()# We will be capturing an image from the AirGen simulator # and run model inference on it.img = car.getImage("front_center","rgb").datamodel = CLIPSeg(use_local =False)result = model.run(rgbimage=img, prompt=<prompt>)print(result.shape)
from grid.model.perception.segmentation.clipseg import CLIPSegcar = AirGenCar()# We will be capturing an image from the AirGen simulator # and run model inference on it.img = car.getImage("front_center","rgb").datamodel = CLIPSeg(use_local =False)result = model.run(rgbimage=img, prompt=<prompt>)print(result.shape)