from grid.model.perception.segmentation.gopenseed import Openseedcar = AirGenCar()# We will be capturing an image from the AirGen simulator # and run model inference on it.img = car.getImage("front_center","rgb").datamodel = Openseed(use_local =True)result = model.run(rgbimage=img, prompt=<prompt>)print(result.shape)
The Openseed class implements a wrapper for the Openseed model, which segments images based on given queries.
This code is licensed under the Apache 2.0 License.
from grid.model.perception.segmentation.gopenseed import Openseedcar = AirGenCar()# We will be capturing an image from the AirGen simulator # and run model inference on it.img = car.getImage("front_center","rgb").datamodel = Openseed(use_local =True)result = model.run(rgbimage=img, prompt=<prompt>)print(result.shape)
from grid.model.perception.segmentation.gopenseed import Openseedcar = AirGenCar()# We will be capturing an image from the AirGen simulator # and run model inference on it.img = car.getImage("front_center","rgb").datamodel = Openseed(use_local =True)result = model.run(rgbimage=img, prompt=<prompt>)print(result.shape)