from grid.model.perception.segmentation.gsam2 import GSAM2
car = AirGenCar()

# We will be capturing an image from the AirGen simulator 
# and run model inference on it.

img =  car.getImage("front_center", "rgb").data

model = GSAM2(use_local = False)
result = model.run(rgbimage=img, prompt=<prompt>)
print(result.shape)

The GSAM2 class provides a wrapper for the GSAM2 model, which combines the power of Grounding DINO for text-based object detection with SAM2 for high-precision segmentation in RGB images.

class GSAM2()
use_local
boolean
default:
"False"

If True, inference call is run on the local VM, else offloaded onto GRID-Cortex. Defaults to False.

def run()
rgbimage
np.ndarray
required

The input RGB image of shape (M,N,3)(M, N, 3).

prompt
str
required

The text prompt to use for segmentation.

Returns
np.ndarray

The predicted segmentation mask of shape (M,N)(M, N).

from grid.model.perception.segmentation.gsam2 import GSAM2
car = AirGenCar()

# We will be capturing an image from the AirGen simulator 
# and run model inference on it.

img =  car.getImage("front_center", "rgb").data

model = GSAM2(use_local = False)
result = model.run(rgbimage=img, prompt=<prompt>)
print(result.shape)

This code is licensed under the Apache 2.0 and BSD-3 License.

Was this page helpful?