from grid.model.perception.segmentation.oneformer import OneFormercar = AirGenCar()# We will be capturing an image from the AirGen simulator # and run model inference on it.img = car.getImage("front_center","rgb").datamodel = OneFormer(use_local =False)result = model.run(rgbimage=img, mode="semantic")print(result.shape)
The OneFormer class provides core functionality for this module.
from grid.model.perception.segmentation.oneformer import OneFormercar = AirGenCar()# We will be capturing an image from the AirGen simulator # and run model inference on it.img = car.getImage("front_center","rgb").datamodel = OneFormer(use_local =False)result = model.run(rgbimage=img, mode="semantic")print(result.shape)
from grid.model.perception.segmentation.oneformer import OneFormercar = AirGenCar()# We will be capturing an image from the AirGen simulator # and run model inference on it.img = car.getImage("front_center","rgb").datamodel = OneFormer(use_local =False)result = model.run(rgbimage=img, mode="semantic")print(result.shape)