from grid.model.perception.segmentation.owlsam import OWLSAMcar = AirGenCar()# We will be capturing an image from the AirGen simulator # and run model inference on it.img = car.getImage("front_center","rgb").datamodel = OWLSAM(use_local =False)result = model.run(rgbimage=img, prompt=<prompt>)print(result.shape)
The OWLSAM class implements a wrapper for the OneFormer model, which performs image segmentation using the OneFormer architecture.
from grid.model.perception.segmentation.owlsam import OWLSAMcar = AirGenCar()# We will be capturing an image from the AirGen simulator # and run model inference on it.img = car.getImage("front_center","rgb").datamodel = OWLSAM(use_local =False)result = model.run(rgbimage=img, prompt=<prompt>)print(result.shape)
This code is licensed under the Apache 2.0 License.
from grid.model.perception.segmentation.owlsam import OWLSAMcar = AirGenCar()# We will be capturing an image from the AirGen simulator # and run model inference on it.img = car.getImage("front_center","rgb").datamodel = OWLSAM(use_local =False)result = model.run(rgbimage=img, prompt=<prompt>)print(result.shape)