from grid.model.perception.segmentation.sapiens_segmentation import SapiensSegmentationcar = AirGenCar()# We will be capturing an image from the AirGen simulator # and run model inference on it.img = car.getImage("front_center","rgb").datamodel = SapiensSegmentation(use_local =False)result = model.run(rgbimage=img)print(result.shape)
The SapiensSegmentation class provides a wrapper for the Sapiens body-part segmentation model.
This model is specifically trained for images with humans as the primary subject.
from grid.model.perception.segmentation.sapiens_segmentation import SapiensSegmentationcar = AirGenCar()# We will be capturing an image from the AirGen simulator # and run model inference on it.img = car.getImage("front_center","rgb").datamodel = SapiensSegmentation(use_local =False)result = model.run(rgbimage=img)print(result.shape)
This code is licensed under the CC-by-NC 4.0 License.
from grid.model.perception.segmentation.sapiens_segmentation import SapiensSegmentationcar = AirGenCar()# We will be capturing an image from the AirGen simulator # and run model inference on it.img = car.getImage("front_center","rgb").datamodel = SapiensSegmentation(use_local =False)result = model.run(rgbimage=img)print(result.shape)